High Energy Lithium Batteries for PHEV Applications

Subramanian Venkatachalam Envia Systems

DOE Vehicle Technologies Program Annual Merit Review Washington D.C.
June 16–20, 2014

Project ID: ES211

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Program Overview

Time line

Start Date: Oct. 2013 End Date: Sept. 2015

Status: 25% Completed

Budget

Total Project Funding \$3.79 M

DOE: 80%

Cost Share: 20%

Barriers

- Meeting PHEV power specifications
- Loss of power with cycling
- Cycle and Calendar life

Partners

Lawrence Berkeley National Laboratory (LBNL)

General Motors (GM)

Oak Ridge National Laboratory (ORNL)

Project Lead – Envia Systems envia

Project Objectives - Relevance

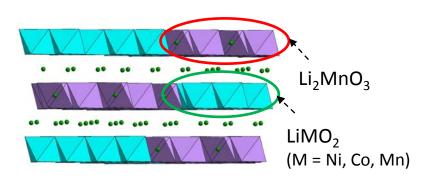
Goals

Develop a high capacity cathode, Si-C based anode and integrate them and build high capacity (0.25-40Ah) pouch cells that exceed the ABR minimum target goals for PHEVs

Relevance

- High DC-Resistance from HCMR[™] Li-rich cathodes reduce the power and usable energy of the cell
- Growth in DC-Resistance with cycling reduce the life of the cell

Project Tasks


- Material development
- Nanocoating engineering
- Atomistic and cell-level modeling
- Material scale-up
- Large cell development
- Large cell testing

Cell Targets

Characteristics	Unit	PHEV40
Specific Discharge Pulse Power	W/kg	800
Discharge Pulse Power Density	W/L	1600
Specific Regen Pulse Power	W/kg	430
Regen Pulse Power Density	W/L	860
Recharge Rate	NA	C/3
Specific Energy	Wh/kg	200
Energy Density	Wh/L	400
Calendar Life	Years	10+
Cycle Life (at 30° C with C/3 Charge and 1C Discharge rates)	Cycles	5000
Operating Temperature Range	°C	-30 to +52

HCMRTM Cathode Layered-Layered Structure

x Li₂MnO₃• (1-x) LiMO₂

Envia has licensed Lithium-rich Layered-Layered Li₂MnO₃·LiMO₂ composite patents from Argonne National Laboratory Envia has developed HCMR[™] (<u>H</u>igh <u>C</u>apacity <u>M</u>anganese <u>R</u>ich) cathodes based on layered-layered composite structures

Key benefits:

- High Capacity
- Low Cost
- High safety

Key issues:

- High DC-Resistance
- Voltage fade upon cycling
- Poor durability

During the First Charge:

(1) $LiMO_2 \rightarrow Li_{1-x}MO_2 + xLi^+ + xe^-$ where M = Ni, Co oxidation occurs ~ 3.7 V

(Classical reaction)

(2) $Li_2MnO_3 \rightarrow MnO_2 + 2Li^+ + 2e^- + 1/2O_2$ which is irreversible and is limited only to 1st charge

(Typical of $HCMR^{TM}$)

During the Discharge:

(3)
$$Li_{1-x}MO_2 + xLi^+ + xe^- \rightarrow LiMO_2$$

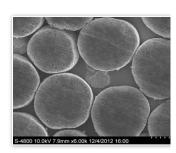
(4) $Li^++MnO_2+e^- \rightarrow LiMnO_2$ (Li insertion into MnO_2)

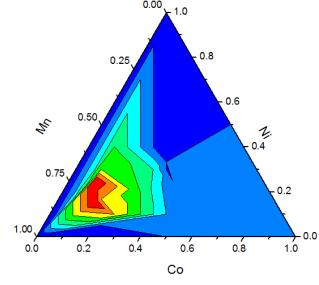
HCMRTM Cathode: Development Status

HEV, PHEV & EVs have different battery requirements ranging from power characteristics to cycle life. Envia solves the problem at the materials level by tailoring the cathode for each application.

Morphology:

Particle size, shape, distribution, tap density & porosity


Composition:

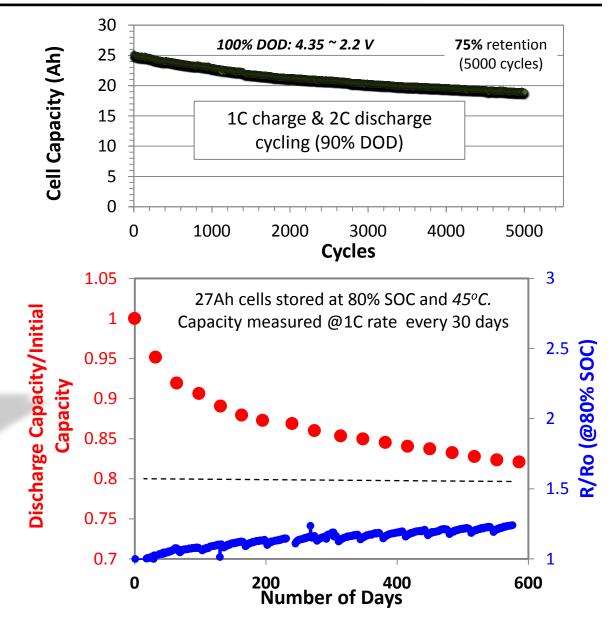

- Ni, Co, Mn ratio, & Li₂MnO₃ content
- Dopants concentration

Nanocoating:

- Chemistry: fluorine, oxide, etc.
- Thickness & uniformity

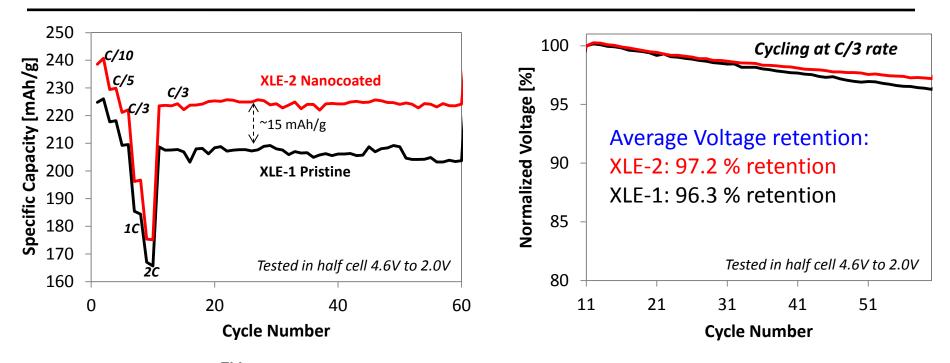
HCMR [™] Type	C/10 Capacity Range mAh/g (4.6V-2.0V)	Status
XP	200 ~ 220	Commercialization
XE	225 ~ 240	R & D
XLE	240 ~ 280	R&D

- In the ABR program, Envia is currently using HCMRTM – XLE cathode
- Detailed cathode specifications are shared with the partners

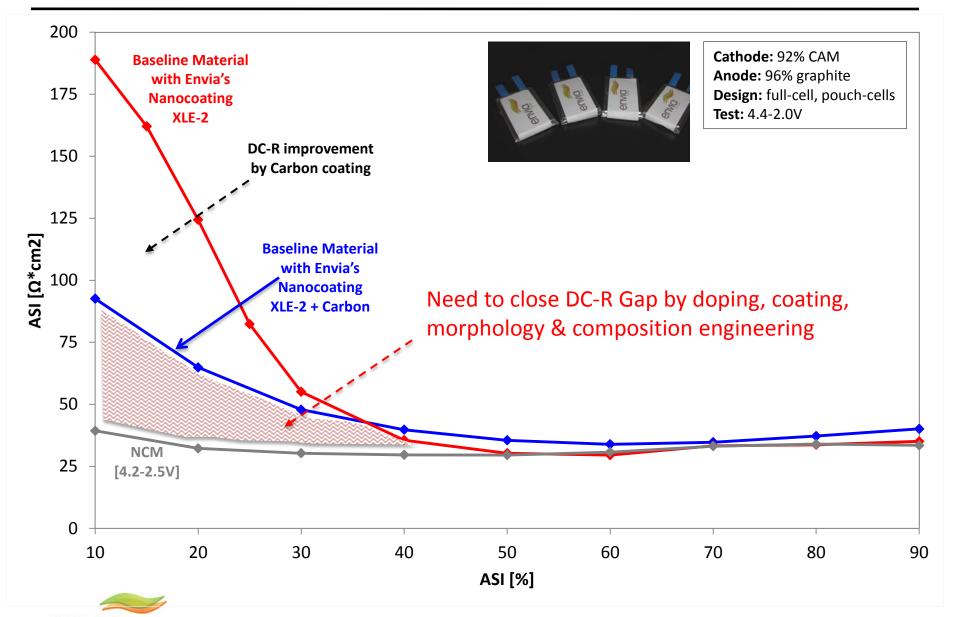


PHEV Cell with HCMRTM XP Cathode

107 Wh, 27 Ah Cell 180 Wh/Kg at 1C with graphite anode

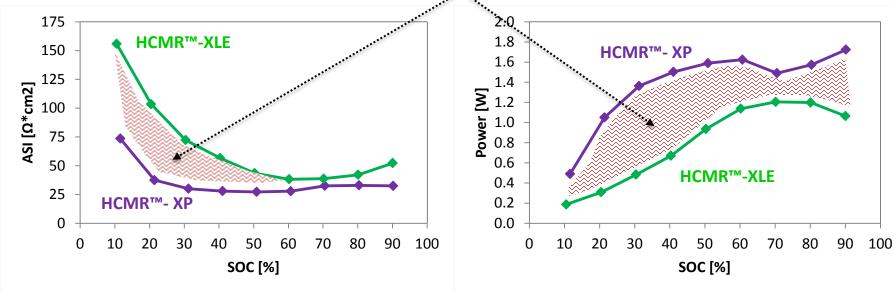


HCMR™ XP cells show <u>no</u> Voltage Fade


HCMRTM XLE Cathode – Electrochemical Chemical Performance

- Baseline HCMRTM cathodes shipped to all program partners
- Nano-coating increases specific capacity (~15mAh/g) showing good capacity retention after 50 cycles at C/3
- Pristine material shows \sim 30mV higher voltage than the nanocoated material at the 1st C/3 cycle, however, at the 50th cycles both materials show similar average voltage
- Nanocoted cathode has lower voltage fade about 2.8% in a half cell. In a full cell the average voltage stabilizes to 2-3% fade after 150 cycles

DC-R Improvement by Carbon Coating


DC-R Impact on Usable Energy and Power

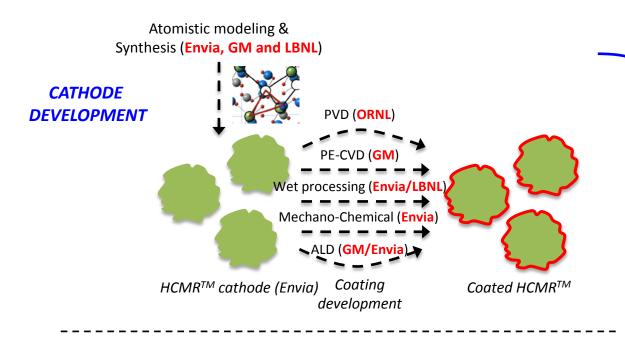
Amount of Li₂MnO₃ in HCMRTM cathode materials determine the usable power and energy of the cell

An increase in DC-R translates to a significant loss of power

Discharge DC-R test:

10 sec, 1C discharge pulse from single-layer pouch-cells

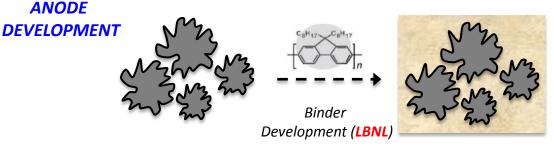
- HCMR™ XLE cathodes show a sharp increase in DC-R starting at 50% SOC which translates to a significant drop in power and lower usable energy
- On the contrary, HCMR™ XP cathodes show a flat DC-R profile from 90% to ~20% SOC translating to higher power and greater usable energy



DC-R – Models and Approaches for Improvement

Root cause	Development Areas	Team
lonic conductivity	Composition engineering of Li ₂ MnO ₃ Dopant engineering Reduction of particle size (morphology engineering) Reduction of O ₂ defects during formation	EnviaEnvia/LBNLEnviaLBNL/Envia
Electronic conductivity	Carbon coatings Dopant engineering Conducting polymer coatings	Envia/GMEnvia/LBNLLBNL
Charge transf resistance	er LiPON nanocoating optimization (ionic) Nanocoating optimization (electronic)	ORNLLBNL/GM/Envia

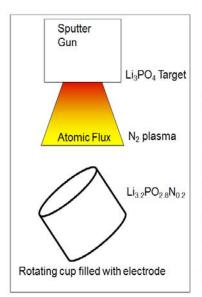
Project Development Roadmap

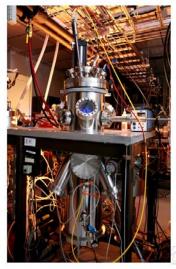


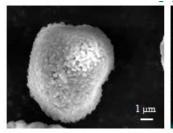
GOAL: Develop a high capacity cathode and a Si-C based anode in order to build high capacity (0.25-40Ah) pouch cells that exceed the **ABR target** goals for PHEV applications.

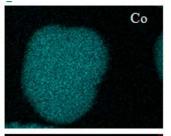
CELL INTEGRATION (Envia) & TESTING (AII)

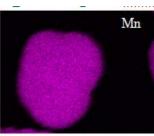
High capacity cells to meet PHEV ABR cell targets

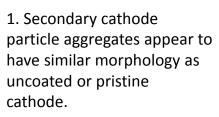

Si-C anode (Envia)

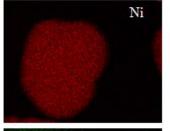

Conductive binder + Si- based anode composite

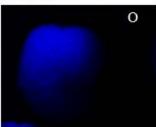


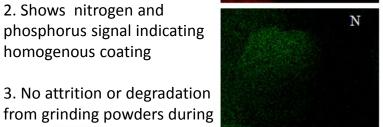

ANODE


Nanocoating LiPON via Physical Vapor Deposition



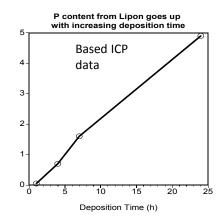


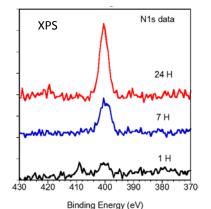




2. Shows nitrogen and phosphorus signal indicating homogenous coating

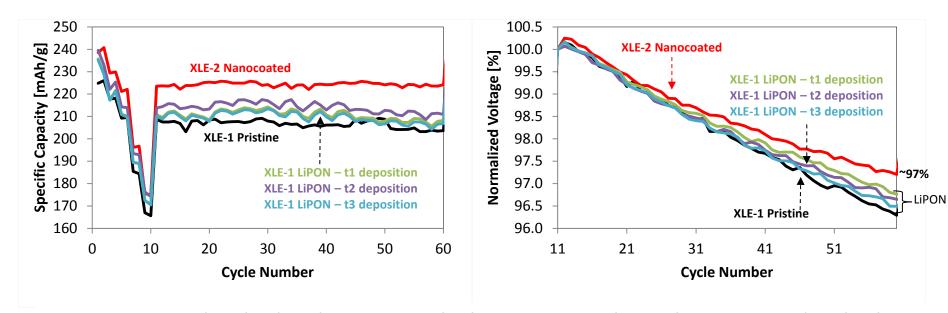
3. No attrition or degradation


deposition



I iPON

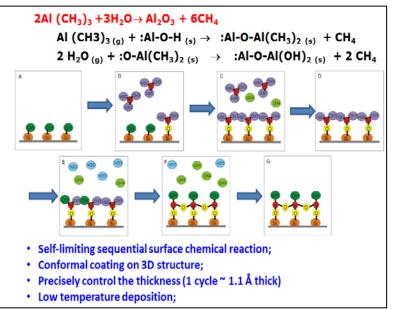
- Stable to 5.5V
- Stable against Li
- Stable in liquid electrolyte
- Grown by vapor deposition in N₂ plasma.

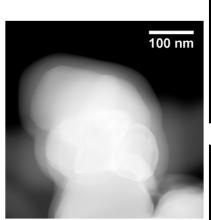

Increase in N content with deposition time

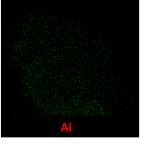
Source: ORNL

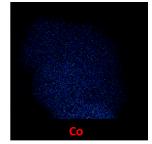
12

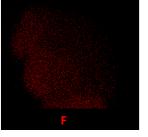
LiPON Coated HCMRTM Materials

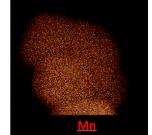

- LiPON-coated cathodes show ~50mV higher average voltage than uncoated cathodes after 50 cycles at C/3
- LiPON-coated materials show ~5-10mAh/g higher capacity than uncoated cathodes
- Voltage retention is improved from \sim 96% (uncoated) to \sim 97% (LiPON-coated) by LiPON deposition, specially for low deposition times
- Optimal LiPON thickness will be applied to the HCMR™-XLE2 to improve DC-R and high voltage durability (cycle life and calendar life)

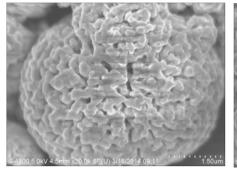

Tested in half cell 4.6V to 2.0V

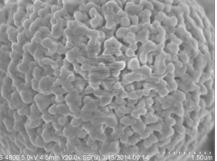


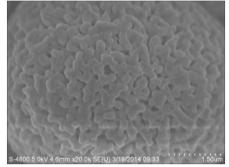

Nanocoating of HCMRTM Materials via ALD Process


Objectives: (1) Explore different ALD nanocoatings - Al_2O_3 , AIF_3 , AIN, ZnO, TiN etc. (2) Optimize the best ALD conditions to get uniform nanocoatings without compromising capacity (3) Investigate the effects of ALD-coated materials on the DC-R of HCMRTM cathode materials

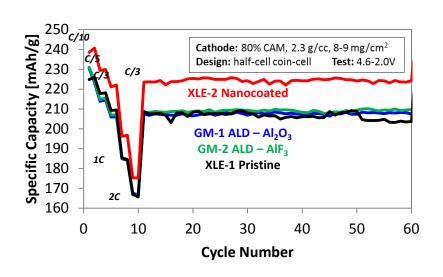


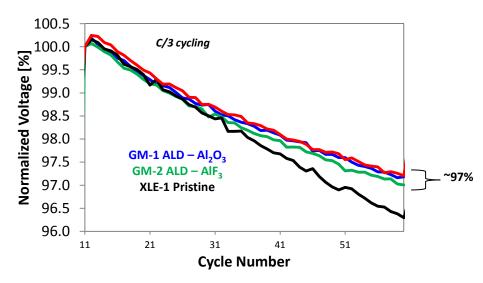






AIF₃ coatings with a thickness ~10nm are uniformly deposited on the surface of the HCMRTM particles


AIF₃ coated


Al₂O₃ coated

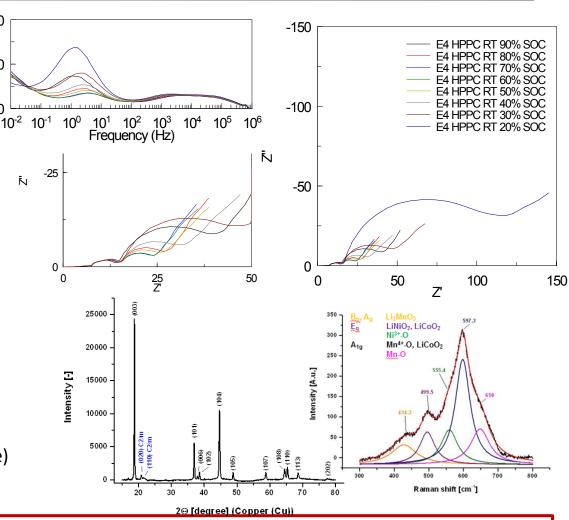
Source: GM

ALD Coated HCMRTM Materials

- ALD coated cathodes show capacities similar to pristine cathodes
- ALD coated cathodes improve capacity retention, absolute average voltage and average voltage retention (~1%) when compared to the pristine cathodes
- Optimized ALD nanocoating will be applied to the HCMR™- XLE2 (Envia nanocoated)
 to improve DC-R and high voltage durability (cycle life and calendar life)

Tested in half cell 4.6V to 2.0V

Material Challenges and Diagnostic Tools


Theta(°)

Material Challenges

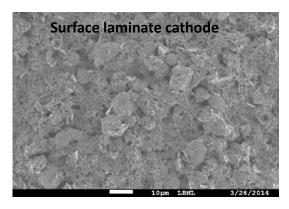
- DC-R
- DC-R growth with cycling
- Capacity fade
- Possible side reactions
- Possible structural transformation

Full suite of tools

- EIS (Deeper insight in DC-R)
- HPPC (Standard test of DC-R)
- SEM/TEM (Morphology changes)
- EDX (Elemental analysis)
- XRD (Bulk structural changes)
- FT-IR (Chemical bonding changes)
- Raman (Chemical bonding changes)
- Model system (Carbon and binder free)

16

Goal: Correlate electrochemical changes to their physical location in the cell to determine cause of these phenomena

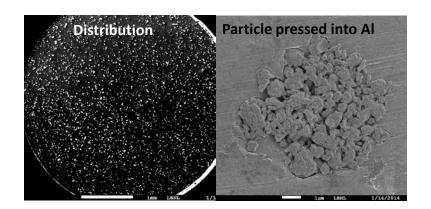

Characterization Approach

Laminate Cathode Electrode

- Cathode powder is laminated & calendared with additives (binder and carbons) into an Al current collector
- Testing in coin cell setup

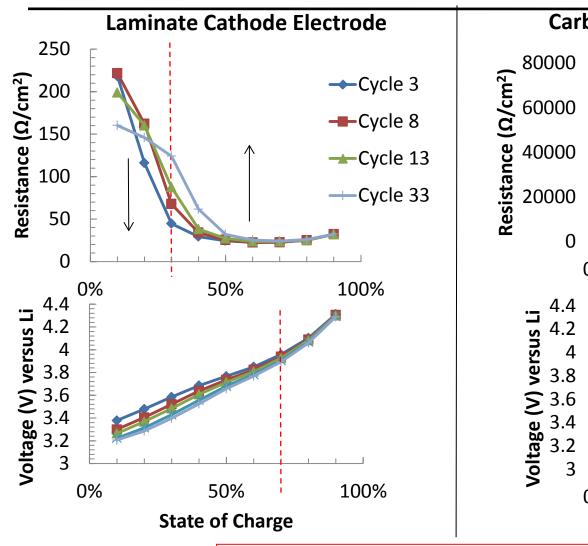
Advantages:

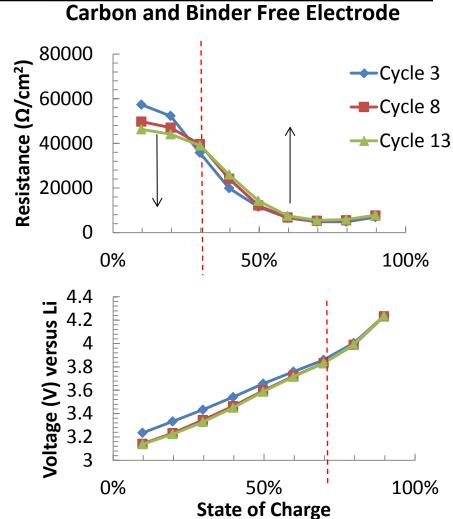
- Approach reflects actual cell application
- Testing matches DOE standards
 - → HPPC Testing



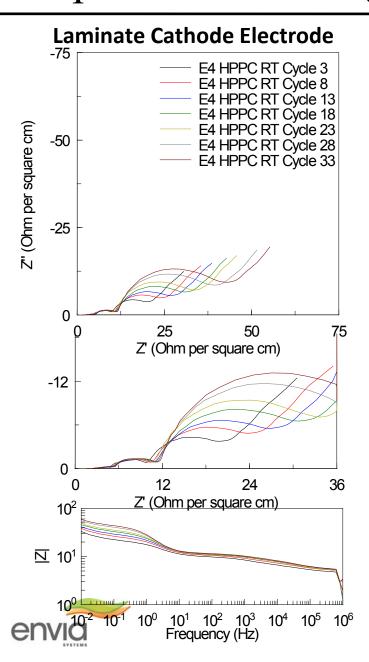
Carbon and Binder Free Electrode

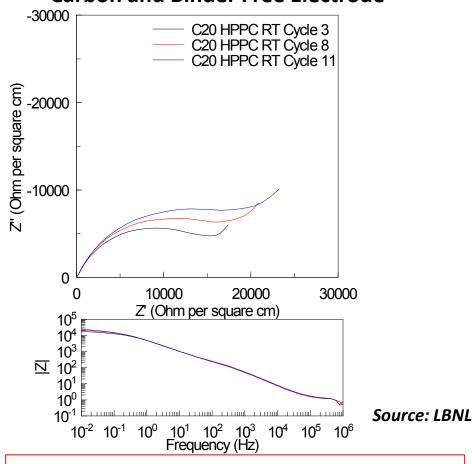
- Pressing pure 100% cathode powder on Al foil
- Ideal (Model) system
- Testing in coin cell setup


Advantages:


- Signal is only from active cathode material
- Easier for characterizing degradation mechanisms

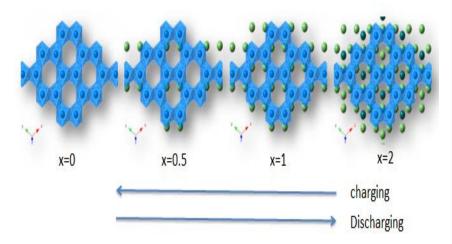
HPPC – Laminate vs. Binder/Carbon Free Electrode





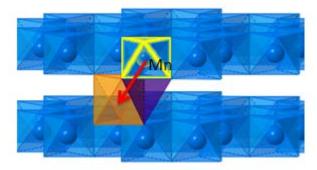
- DC-R **drops** with cycling < 30% SOC
- DC-R **rises** with cycling 30% to 90% SOC
- Voltage Fade < 70% SOC

Impedance for Insight into DC-R at 40% SOC


Carbon and Binder Free Electrode

- Cycling increases low frequency semicircle
- DC-R growth because of slow time constant process (Slower than typical charge transfer process)

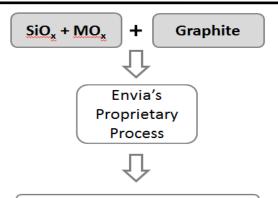
Theoretical Modeling – DC-R and Phase Change


 Stable intermediate states as a function of SOC (while keeping the layered structure) were predicted

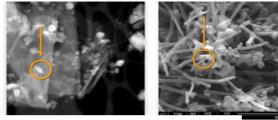
- □ At each stable intermediate state,
 - Energy barrier calculation for Li hopping to a nearby site: Li ionic conductivity
 - Density of states calculation to get the band gap: Electronic conductivity

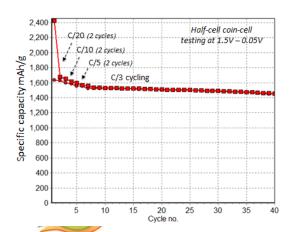
Phase Transformation mechanism was revealed

 Mn-migration to the Li-layer, occurring at high charge (instantaneous at x<0.5, sluggish at 0.5<x<1), is a key factor resulting the phase transformation to spinel-like structures

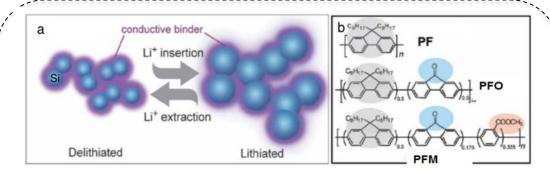

□ How to prevent it?

In BATT program, effect of doping on the voltage fade has been explored. In the ABR project we are looking at stabilizing the structure via doping to eliminate the DC-R growth with respect to cycling


- Partially dope for Li to decrease the tendency for Mn migration
- Partially dope for Mn and increase the Mnmigration barriers

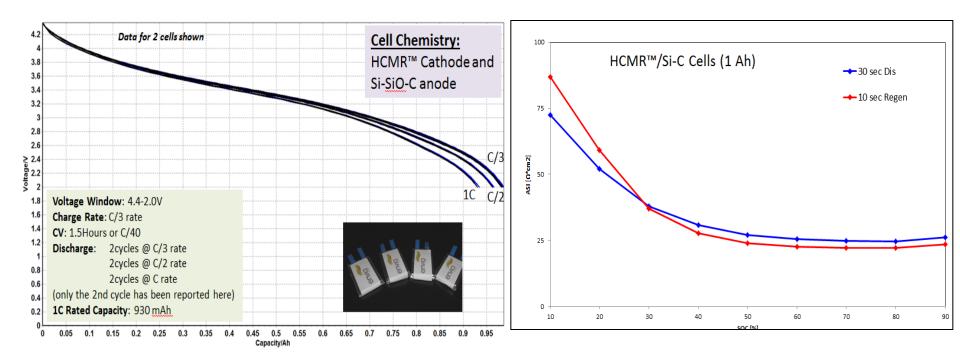

Si-C Anode Development

nSi-nSiO,-Graphene anode



TEM/SEM analysis of Si-SiO_x-graphite anodes:

- Envia has developed an anode powder synthesis
 process using low cost precursors like SiO_x and graphite
- Composition is proprietary (Si-SiO_x-Graphene) and patents have been filed
- Process is cheap, scalable and available in kg quantities


Embedded SiO_x and Si particles between graphene sheets enhances mechanical stability and resistance against pulverization due to the large Si volume expansion explaining the improved cycle life

Envia's anode material will be paired with LBNL's conductive binder to enable long cycle and calendar life meeting ABR PHEV goals

ABR Baseline Cell

- 930mAh capacity ABR baseline cells have been assembled and electrochemical performance (capacity & HPPC) is being tested and validated
- 12 ABR baseline cells were shipped to INL in April 2014 and testing protocols have been finalized
- DC-R measurements for the HCMR[™]/Si-C baseline cells show similar on-set as the Graphite cells
- Energy and power density evaluations, as well as, cycle life and calendar life are underway

Summary and Future Work

Summary:

- Conducting carbon coatings on cathode have reduced the DC-Resistance
- LiPON coatings on cathode have improved average voltage without compromising specific capacity
- ALD coatings on cathode have improved capacity retention, absolute average voltage and average voltage retention
- Phase transition mechanisms have been revealed by Atomistic modeling suggesting Mn migration to the Li layer

Future Work:

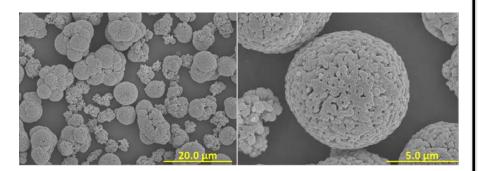
- Understand the root cause of DC-R and DC-R growth in HCMR™ cathodes using atomistic modeling and diagnostic tools
- Develop a cathode with low DC-R by optimizing the composition, dopants, nanocoating and synthesis conditions
- For LiPON coated HCMR™ materials (i) structural investigations using neutron diffraction & aberration corrected electron microscopy and (ii) metal ion dissolution and oxygen loss will be studied
- Taylor unique conducting binders to improve the cycle life of Si-C based anodes
- Optimize the integration of HCMRTM cathodes and Si-C anodes in a PHEV cell

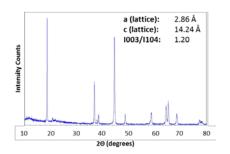
Acknowledgements

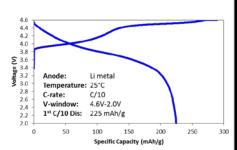
- Pedro Hernandez
- Shabab Amiruddin
- Bing Li
- Charan Masarapu
- Herman Lopez
- Sujeet Kumar
- Michael Sinkula
- Jim Buckley
- Envia Technical Team
- Robert Kostecki
- Vincent Battaglia
- Guoying Chen
- Gao Liu
- Kristin Persson
- Daniel Membreno
- Lydia Terborg
- Eunseok Lee
- Alpesh K. Shukla

- Bob Powell
- Xingcheng Xiao
- Mei Cai
- K. Raghunathan

- Jagjit Nanda
- Nancy Dudney
- Gabrielle Veith

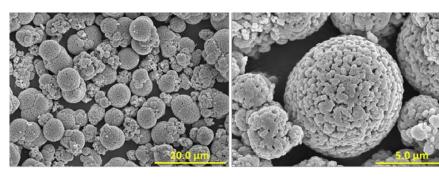


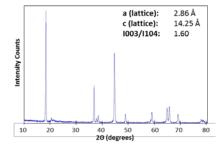

Technical Back up Slides

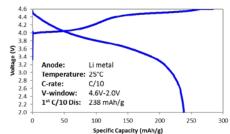


Baseline HCMRTM-XLE Cathode Materials

$HCMR^{TM} - XLE #1 (Uncoated)$

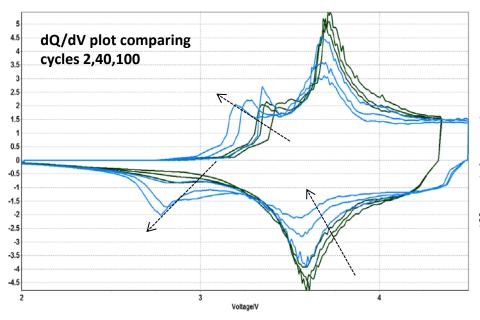


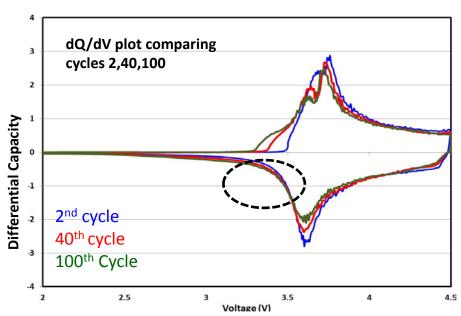




Measurement	Value
Primary Particle (nm)	201±26
D50 (µm)	8.44
FWHM (μm)	8.18
BET (m ² /g)	1.44
Tap Density (g/cc)	1.68
pH (Powder)	10.74
1st C/10 Charge (mAh/g)	289
1st C/10 Discharge (mAh/g)	225
Average Voltage at C/10 (V)	3.73

HCMR[™] – XLE #2 (Envia Nanocoated)

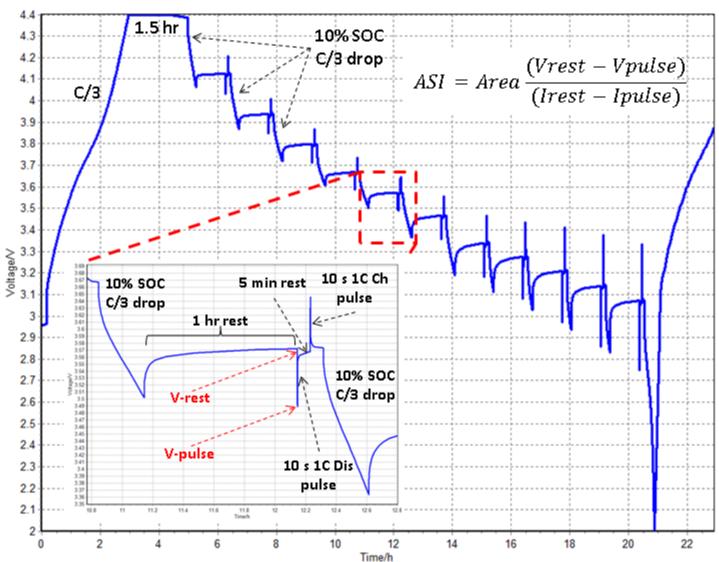

Measurement	Value
Primary Particle (nm)	217±17
D50 (μm)	8.27
FWHM (μm)	8.11
BET (m ² /g)	2.60
Tap Density (g/cc)	1.65
pH (Powder)	10.80
1st C/10 Charge (mAh/g)	284
1st C/10 Discharge (mAh/g)	238
Average Voltage at C/10 (V)	3.69



HCMRTM XP vs. XLE - dQ/dV Analysis

HCMR[™]-XLE cathode material shows Mn activity upon repeated cycling

HCMR-XP cathode material showing no Mn activity with cycling



Data from full cell: HCMR™-XP/XLE vs Graphite

DCR Measurement Protocol

